Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8247, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589438

RESUMO

The aim of the present study was to prepare and evaluate Piperine (PP) loaded chitosan lipid nanoparticles (PP-CLNPs) to evaluate its biological activity alone or in combination with the antidiabetic drug Metformin (MET) in the management of cognitive deficit in diabetic rats. Piperine was successfully loaded on CLNPs prepared using chitosan, stearic acid, Tween 80 and Tripolyphosphate (TPP) at different concentrations. The developed CLNPs exhibited high entrapment efficiency that ranged from 85.12 to 97.41%, a particle size in the range of 59.56-414 nm and a negatively charged zeta potential values (- 20.1 to - 43.9 mV). In vitro release study revealed enhanced PP release from CLNPs compared to that from free PP suspensions for up to 24 h. In vivo studies revealed that treatment with the optimized PP-CLNPs formulation (F2) exerted a cognitive enhancing effect and ameliorated the oxidative stress associated with diabetes. PP-CLNPs acted as an effective bio-enhancer which increased the potency of metformin in protecting brain tissue from diabetes-induced neuroinflammation and memory deterioration. These results suggested that CLNPs could be a promising drug delivery system for encapsulating PP and thus can be used as an adjuvant therapy in the management of high-risk diabetic cognitive impairment conditions.


Assuntos
Alcaloides , Benzodioxóis , Quitosana , Disfunção Cognitiva , Diabetes Mellitus Experimental , Lipossomos , Metformina , Nanopartículas , Piperidinas , Alcamidas Poli-Insaturadas , Ratos , Animais , Ratos Wistar , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Cognição , Metformina/farmacologia , Metformina/uso terapêutico , Tamanho da Partícula , Portadores de Fármacos
2.
Toxicol Mech Methods ; 34(4): 454-467, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38166588

RESUMO

Nonalcoholic fatty liver disease (NAFLD) has emerged as a major chronic liver illness characterized by increase of lipid content in the liver. This study investigated the role of lauric acid to treat NAFLD in male adult Sprague Dawley rats. In this study, to induce NAFLD in the rats, a high-fat diet (HFD) was administered for eight consecutive weeks. Lauric acid groups received lauric acid (250 and 500 mg/kg; orally), concurrently with HFD for eight consecutive weeks. Lauric acid could ameliorate the serum levels of TG, TC, ALT, AST, blood glucose, and insulin. Moreover, lauric acid significantly elevated the levels of SOD, GSH, catalase, and IL-10. Additionally, it lowered the hepatic levels of MDA, ROS, MPO, 4-HNE, interleukin (IL)-1ß, and tumor necrosis factor (TNF-α). Furthermore, lauric acid significantly up-regulated the hepatic expression of IRS1, AMPK, PI3K, and SIRT1 genes. In parallel, lauric acid could improve the histopathological picture of the liver and reduce the liver apoptosis via decreasing the expression of annexin V (Anx V). Finally, our data proposed that lauric acid could be an effective candidate for the NAFLD treatment.


Assuntos
Ácidos Láuricos , Hepatopatia Gordurosa não Alcoólica , Ratos , Masculino , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/etiologia , Dieta Hiperlipídica/efeitos adversos , Ratos Sprague-Dawley , Fígado , Fator de Necrose Tumoral alfa/metabolismo
3.
Heliyon ; 9(4): e15444, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37151701

RESUMO

Blood clotting has become one of the most dangerous side effects associated with Corona virus, as well as the high level of cholesterol and triglycerides in the blood. Therefore, it has become necessary to use medicinal plants that are biologically safe and containing anti-clotting compound. Feijoa sellowiana represents a prolific source diverse compounds that may have thrombolytic activity. Therefore, the main research point is the production and scaling up of a target contents that have anticoagulants by using biotechnological techniques; calli production, and bioreactors and assessed their activity through in-vivo study. Murashige and Skoog (MS) medium enriched with varying concentrations of benzyl adenine (BA) and naphthalene acetic acid (NAA) was used to cultivate calli and cell suspension cultures from F. sellowiana seeds. Bioreactors were employed to boost active constituent's production. Moreover, the bioreactor physical factors such as effect of controlled or uncontrolled pH medium were investigated. The leaves of the main plant were extracted by ethanol 70% and polar and non-polar extracts were also prepared. The ethanol extract of calli and cells resulting from bioreactors were also prepared. All prepared extracts were subjected to chemical analysis by HPLC, in-vitro antioxidant assays, in-vivo anticoagulant activity and histopathological examination. Calli and cell suspension cultures were produced by using MS medium fortified with 1 mg/L BA+ 0.1 mg/L NAA. It was found that culturing of cell cultures in a bioreactor with uncontrolled pH and aeration at the value of 0.5 L/min gave the maximum and economical fresh and dry weights of the plants. After evaluation of all extracts; it was found that the calli ethanol extract for each plant was the highest value of total phenolic and total flavonoid contents either quantitatively or qualitatively. All extracts of Feijoa had antioxidant activity. The IC50 of the DPPH of Feijoa calli extract was 13.45 µg/mL, it was also confirmed by FRAP and ABTs values. Feijoa calli extract decreased platelet aggregation by suppression of thrombin, extended aPTT, PT, bleeding and clotting times. It was safer than warfarin medication. From these findings the authors can conclude that Feijoa had highly anticoagulant activity and the calli production achieved the goal of the enhancement of the phenolic constituent and thus their activity.

4.
PLoS One ; 18(4): e0283779, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37018237

RESUMO

IL-17 is associated with varied inflammatory and immune-related diseases. However, the biological function of IL-17 and its expression in acute lung damage are not entirely known. Thanks to the powerful antioxidant properties of ß-carotene, we presumed that it would show a potent protecting effect against cyclophosphamide (CP) -induced acute lung injury (ALI) in mice. We studied the mechanisms underlying the effect of ß-carotene supplementation against CP-induced ALI in mice. We isolated the ß-carotene from Scenedesmus obliquus microalgae n-hexane extract and identified it by HPLC and 1H-NMR analysis. Within the experiments, 40 mice were assigned into five groups randomly: Group 1 (Control): Mice received saline. Group 2 (ß-carotene control): Mice were administered ß-carotene (40 mg/kg; orally) once daily for 10 sequent days without CP injection. Group 3 (CP): One i.p injection of 200 (mg/kg) of CP was given to mice. Group 4 and 5 (CP + ß-carotene): Mice were administered ß-carotene (20 and 40 mg/kg; orally) once a day for ten days following the CP injection. Lung samples were collected for lab analysis, after scarifying the animals at the experiment end. Administration of ß-carotene orally reduced CP-induced ALI and inflammation. ß-carotene significantly decreased wet-to-dry weight ratios (W/D), down-regulated IL-17, NF-κB, and IKBKB, decreased the contents of TNF-α, COX-2, and PKC, and increased the contents of SIRT1 and PPARγ in the lung tissues. ß-carotene ameliorated the histopathological changes induced by CP and reduced the scoring number of inflammatory cell infiltration and emphysema when compared to CP. Consequently, we conclude natural ß-carotene is a promising anti-inflammatory mediator for different inflammatory-related complications.


Assuntos
Lesão Pulmonar Aguda , beta Caroteno , Camundongos , Animais , Interleucina-17 , Lesão Pulmonar Aguda/patologia , Pulmão/patologia , NF-kappa B/metabolismo , Ciclofosfamida/efeitos adversos
5.
Toxics ; 11(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37112606

RESUMO

We have examined the effects of four different polyphenols in attenuating heroin addiction using a conditioned place preference (CPP) paradigm. Adult male Sprague Dawley rats received heroin (alternating with saline) in escalating doses starting from 10 mg/kg, i.p. up to 80 mg/kg/d for 14 consecutive days. The rats were treated with distilled water (1 mL), quercetin (50 mg/kg/d), ß-catechin (100 mg/kg/d), resveratrol (30 mg/kg/d), or magnolol (50 mg/kg/d) through oral gavage for 7 consecutive days, 30 min before heroin administration, starting on day 8. Heroin withdrawal manifestations were assessed 24 h post last heroin administration following the administration of naloxone (1 mg/kg i.p). Heroin CPP reinstatement was tested following a single dose of heroin (10 mg/kg i.p.) administration. Striatal interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) were quantified (ELISA) after naloxone-precipitated heroin withdrawal. Compared to the vehicle, the heroin-administered rats spent significantly more time in the heroin-paired chamber (p < 0.0001). Concomitant administration of resveratrol and quercetin prevented the acquisition of heroin CPP, while resveratrol, quercetin, and magnolol blocked heroin-triggered reinstatement. Magnolol, quercetin, and ß-catechin blocked naloxone-precipitated heroin withdrawal and increased striatal IL-6 concentration (p < 0.01). Resveratrol administration was associated with significantly higher withdrawal scores compared to those of the control animals (p < 0.0001). The results of this study show that different polyphenols target specific behavioral domains of heroin addiction in a CPP model and modulate the increase in striatal inflammatory cytokines TNF-α and IL-6 observed during naloxone-precipitated heroin withdrawal. Further research is needed to study the clinical utility of polyphenols and to investigate the intriguing finding that resveratrol enhances, rather than attenuates naloxone-precipitated heroin withdrawal.

6.
Inflammopharmacology ; 31(3): 1465-1480, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36884189

RESUMO

Potassium dichromate (PD) is an environmental xenobiotic commonly recognized as teratogenic, carcinogenic, and mutagenic in animals and humans. The present study was conducted to investigate the role of tangeretin (TNG) as a neuro-protective drug against PD-induced brain injury in rats. Thirty-two male adult Wistar rats were blindly divided into four groups (8 rats/group). The first group received saline intranasally (i.n.). The second group received a single dose of PD (2 mg/kg, i.n.). The third group received TNG (50 mg/kg; orally), for 14 days followed by i.n. of PD on the last day of the experiment. The fourth group received TNG (100 mg/kg; orally) for 14 days followed by i.n. of PD on the last day of the experiment. Behavioral indices were evaluated 18 h after PD administration. Neuro-biochemical indices and histopathological studies were evaluated 24 h after PD administration. Results of the present study revealed that rats intoxicated with PD induced- oxidative stress and inflammation via an increase in malondialdehyde (MDA) and a decrease in nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and glutathione(GSH) levels with an increase in brain contents of tumor necrosis factor-alpha (TNF-α) and interleukin (IL-6). Pre-treatment with TNG (100 mg/kg; orally) ameliorated behavior, cholinergic activities, and oxidative stress and decreased the elevated levels of pro-inflammatory mediators; TNF-α and IL-6 with a decrease in brain content of chromium residues detected by Plasma-Optical Emission Spectrometer. Also, the histopathological picture of the brain was improved significantly in rats that received TNG (100 mg/kg). Additionally, TNG decreased caspase-3 expression in the brain of PD rats. In conclusion, TNG possesses a significant neuroprotective role against PD-induced acute brain injury via modulating the Nrf2 signaling pathway and quenching the release of inflammatory mediators and apoptosis in rats.


Assuntos
Lesões Encefálicas , Fármacos Neuroprotetores , Humanos , Ratos , Masculino , Animais , Ratos Wistar , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Mediadores da Inflamação/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Cromo/farmacologia , Interleucina-6/metabolismo , Transdução de Sinais , Estresse Oxidativo , Glutationa/metabolismo , Apoptose
7.
Fundam Clin Pharmacol ; 37(5): 947-959, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36977287

RESUMO

Adenosine monophosphate kinase/liver kinase B1/peroxisome proliferator-activated receptor-γ coactivator 1-α (AMPK/LKB1/PGC1α) pathway has a vital role in regulating age-related diseases. It controls neurogenesis, cell proliferation, axon outgrowth, and cellular energy homeostasis. AMPK pathway also regulates mitochondrial synthesis. The current study evaluated the effect of chrysin on D-galactose (D-gal) induced-aging, neuron degeneration, mitochondrial dysfunction, oxidative stress, and neuroinflammation in mice. The mice were allocated randomly into four groups (10 each group): Group 1: normal control group, Group 2: D-gal group, Groups 3 and 4: chrysin (125 and 250 mg/kg, respectively). Groups 2-4 were injected with D-gal (200 mg/kg/day; s.c) for 8 weeks to induce aging. Groups 3 and 4 were orally gavaged every day concurrent with D-gal. At the end of experiment, behavioral, brain biochemical and histopathological changes were monitored. Chrysin administration elevated discrimination ratio in object recognition, Y Maze percentage alternation, locomotor activity and brain contents of AMPK, LKB1, PGC1α, NAD (P)H quinone oxidoreductase 1 (NQO1), heme oxygenase 1 (HO-1), nerve growth factor (NGF) (neurotrophin-3; NT-3), and seretonin as well as reduced brain contents of tumor necrosis factor-alpha (TNF-α), nuclear factor kappa B (NF-κB), advanced glycation end products (AGEs) and glial fibrillary acidic protein (GFAP) compared to D-gal-treated mice. Chrysin also alleviated cerebral cortex and white matter neurons degeneration. Chrysin protects against neurodegeneration, improves mitochondrial autophagy and biogenesis as well as activates antioxidant genes expression. In addition, chrysin ameliorates neuroinflammation and stimulates the release of NGF and serotonin neurotransmitter. So, chrysin has a neuroprotective effect in D-gal induced-aging in mice.


Assuntos
Adenilato Quinase , Galactose , Camundongos , Animais , Galactose/farmacologia , Adenilato Quinase/metabolismo , Adenilato Quinase/farmacologia , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/farmacologia , Regulação para Cima , Proteínas Quinases Ativadas por AMP/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/farmacologia , Doenças Neuroinflamatórias , Fator de Crescimento Neural/metabolismo , Transdução de Sinais , Envelhecimento , Estresse Oxidativo , Fígado/metabolismo
8.
Inflammopharmacology ; 31(3): 1361-1372, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36877411

RESUMO

Cyclophosphamide (CP) is a chemotherapeutic agent that causes pulmonary damage by generating free radicals and pro-inflammatory cytokines. Pulmonary damage has a high mortality rate due to the severe inflammation and edema occurred in lung. PPARγ/Sirt 1 signaling has been shown to be cytoprotective effect against cellular inflammatory stress and oxidative injury. Protocatechuic acid (PCA) is a potent Sirt1 activator and exhibits antioxidant as well as anti-inflammatory properties. The current study aims to investigate the therapeutic impacts of PCA against CP-induced pulmonary damage in rats. Rats were assigned randomly into 4 experimental groups. The control group was injected with a single i.p injection of saline. CP group was injected with a single i.p injection of CP (200 mg/kg). PCA groups were administered orally with PCA (50 and 100 mg/kg; p.o.) once daily for 10 consecutive days after CP injection. PCA treatment resulted in a significant decrease in the protein levels of MDA, a marker of lipid peroxidation, NO and MPO along with a significant increase in GSH and catalase protein levels. Moreover, PCA downregulated anti-inflammatory markers as IL-17, NF-κB, IKBKB, COX-2, TNF-α, and PKC and upregulated cytoprotective defenses as PPARγ, and SIRT1. In addition, PCA administration ameliorated FoxO-1 elevation, increased Nrf2 gene expression, and reduced air alveoli emphysema, bronchiolar epithelium hyperplasia and inflammatory cell infiltration induced by CP. PCA might represent a promising adjuvant to prevent pulmonary damage in patients receiving CP due to its antioxidant and anti-inflammatory effects with cytoprotective defenses.


Assuntos
Antioxidantes , Proliferadores de Peroxissomos , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proliferadores de Peroxissomos/farmacologia , Sirtuína 1/metabolismo , PPAR gama/metabolismo , Ciclofosfamida/efeitos adversos , Pulmão , Estresse Oxidativo , Anti-Inflamatórios/farmacologia
9.
J Appl Toxicol ; 43(8): 1119-1129, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36807594

RESUMO

Acute kidney injury (AKI) is a very critical cause of death in the whole world. Lipopolysaccharide (LPS) induces kidney damage by activating various deleterious inflammatory and oxidative pathways. Protocatechuic acid, a natural phenolic compound, has shown to exert beneficial effects against oxidative and inflammatory responses. The study aimed to clarify the nephroprotective activity of protocatechuic acid in LPS-induced acute kidney damage in mice. Forty male Swiss mice were allocated in four groups as follows: normal control group; LPS (250 µg/kg, ip)-induced kidney injury group; LPS-injected mice treated with protocatechuic acid (15 mg/kg, po), and LPS-injected mice treated with protocatechuic acid (30 mg/kg, po). Significant toll-like receptor 4 (TLR-4)-mediated activation of IKBKB/NF-κB and MAPK/Erk/COX-2 inflammatory pathways has been observed in kidneys of mice treated with LPS. Oxidative stress was revealed by inhibition of total antioxidant capacity, catalase, nuclear factor erythroid 2-related factor 2 (Nrf2), and NAD(P)H quinone oxidoreductase (NQO1) enzyme along with increased nitric oxide level. In parallel, focal inflammatory effects were shown in between the tubules and glomeruli as well as in the perivascular dilated blood vessels at the cortex affecting the normal morphology of the kidney tissues of LPS-treated mice. However, treatment with protocatechuic acid reduced LPS-induced changes in the aforementioned parameters and restored normal histological features of the affected tissues. In conclusion, our study uncovered that protocatechuic acid has nephroprotective effects in mice with AKI through opposing different inflammatory and oxidative cascades.


Assuntos
Injúria Renal Aguda , NF-kappa B , Masculino , Animais , Camundongos , NF-kappa B/metabolismo , Lipopolissacarídeos/toxicidade , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Quinase I-kappa B/metabolismo , Regulação para Baixo , Sistema de Sinalização das MAP Quinases , Rim , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
10.
BMC Pharmacol Toxicol ; 24(1): 9, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759887

RESUMO

BACKGROUND: Seizures are considered to be the most common symptom encountered in emergency- rushed tramadol-poisoned patients; accounting for 8% of the drug-induced seizure cases. Although, diazepam clears these seizures, the risk of central respiratory depression cannot be overlooked. Henceforth, three adsorbing composites were examined in a tramadol acute intoxication mouse model. METHODS: Calcium Silicate (Wollastonite) either non-doped or wet doped with iron oxide (3%Fe2O3) or zinc oxide (30% ZnO) were prepared. The composites' adsorption capacity for tramadol was determined in vitro. Tramadol intoxication was induced in Swiss albino mice by a parenteral dose of 120 mg/kg. Proposed treatments were administered within 1 min at 5 increasing doses, i.p. The next 30 min, seizures were monitored as an intoxication symptom. Plasma tramadol concentration was recorded after two hours of administration. RESULTS: The 3% Fe2O3-containing composite (CSFe3), was found to be composed of mainly wollastonite with very little alpha-hematite. On the other hand, hardystonite and wellimite were developed in the 30%ZnO-containing composite (CSZn3). Micro-round and irregular nano-sized microstructures were established (The particle size of CS was 56 nm, CSFe3 was 49 nm, and CSZn3 was 42 nm). The CSZn3 adsorption capacity reached 1497 mg of tramadol for each gram. Tramadol concentration was reduced in plasma and seizures were inhibited after its administration to mice at three doses. CONCLUSION: The calcium silicate composite doped with ZnO presented a good resolution of tramadol-induced seizures accompanied by detoxification of blood, indicating its potential for application in such cases. Further studies are required.


Assuntos
Tramadol , Óxido de Zinco , Camundongos , Animais , Óxido de Zinco/toxicidade , Compostos de Cálcio , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Analgésicos Opioides/efeitos adversos
11.
Pharm Dev Technol ; 28(1): 109-123, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36593750

RESUMO

The present study aimed to improve the neuroprotective effect of chrysin (CHR) by combining two formulation techniques, phospholipid (PL) complexation and solid dispersion (SD). CHR-phospholipid complex (CHR-PLC) was prepared through solvent evaporation. The molar ratio CHR/PL (1:3), which exhibited the highest complexation efficiency, was selected for the preparation of CHR-PLC loaded SD (CHR-PLC-SD) with 2-hydroxypropyl ß cyclodextrin (2-HPßCD) and polyvinylpyrrolidone 8000. CHR-PLC/2-HPßCD (1:2, w/w) displayed the highest aqueous solubility of CHR (5.86 times more than that of plain CHR). CHR-SD was also prepared using 2-HPßCD for comparison. The in vitro dissolution of CHR-PLC-SD4 revealed an enhancement in the dissolution rate over CHR-PLC (1:3), CHR-SD, and plain CHR by six times. The optimum formulations and plain CHR were evaluated for their neuroprotective effect on brain aging induced by D-galactose in mice. The results demonstrated a behavioral activity elevation, an increase of AMPK, LKB1, and PGC1α brain contents as well as a reduction of AGEs, GFAP, NT-3, TNF-α, and NF-κß brain contents when compared with those of the D-galactose control group. Thus, the developed formulations stimulated neurogenesis and mitochondrial biogenesis as well as suppressed neuroinflammation and neurodegeneration. The order of activity was as follows: CHR-PLC-SD4 > CHR-PLC (1:3) > CHR-SD > plain CHR.


Assuntos
Fármacos Neuroprotetores , Camundongos , Animais , 2-Hidroxipropil-beta-Ciclodextrina , Fármacos Neuroprotetores/farmacologia , Fosfolipídeos , Galactose , Solubilidade
12.
Biomarkers ; 28(3): 289-301, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36588463

RESUMO

Background: Carpet dust exposure in the carpet industry causes various respiratory hazards that lead to permanent loss of lung function. This study investigated the potentially toxic effects of knotted and tufted carpet dust on rat lungs and the possible involvement of cytochrome P450 2E1 (CYP2E1) and extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathways in the induced toxicity, as well as histological changes in the lung induced by carpet dust.Methods: This study divided 48 adult rats into six groups: group I was the control group, group II (vehicle group) received phosphate buffer saline (50 µL/rat), groups III and IV received knotted dust (2.5 and 5 mg/kg, respectively), and groups V and VI received tufted dust (2.5 and 5 mg/kg, respectively). All treatments were intranasally administered once a day for 7 days.Results: Both dust types significantly decreased the lung content of GSH compared with the control. Significantly elevated malondialdehyde (MDA) and nitric oxide (NO) lung contents were observed with an increased CYP2E1, interleukin (IL)-6, nuclear factor kappa B (NF-κß), and ERK/MAPK. The histological lung structure was moderately affected with a moderately increased number of CD68-positive macrophages in the lung parenchyma of knotted dust-exposed rats, whereas tufted dust exposure severely affected the lung tissue with significantly increased CD68-positive macrophages.Conclusions: Carpet dust exposure could induce oxidative stress and inflammatory response in the lung tissue via induction of CYP2E1 that stimulates ERK/MAPK signalling pathway proteins, resulting in elevated MDA, NO and IL-6 levels in the lung tissue with suppressed GSH content. Tufted dust could possess a more toxic response than knotted ones.


Assuntos
Citocromo P-450 CYP2E1 , Poeira , Ratos , Animais , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/farmacologia , Pisos e Cobertura de Pisos , Pulmão/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/farmacologia
13.
Fundam Clin Pharmacol ; 37(1): 137-146, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35861135

RESUMO

Cyclophosphamide is an anticancer and immunosuppressive agent used in the treatment of various malignancies but causing gastrointestinal distress. Cannabis sativa and its derivatives have been used for the treatment of human gastrointestinal disorders. A purpose of this study was to investigate the effect of C. sativa on nausea induced by cyclophosphamide in rats. The rats were divided into four groups (eight animals per group): Group 1: Normal control (saline i.p.). Group 2: Rats received cyclophosphamide (200 mg/kg i.p.) 3 consecutive days. Group 3 and 4: Rats received cyclophosphamide (200 mg/kg i.p.) across Days 1-7, and C. sativa (20 and 40 mg/kg s.c.) was administered on cyclophosphamide days 4-7. We examined intake of kaolin, normal food and changes in body weight, as an indicator of the emetic stimulus. Oxidative stress markers, antioxidant enzymes status, serotonin (5-HT), dopamine, noradrenaline and CB1R levels were evaluated in the intestinal homogenate. Moreover, histopathological study was performed. Results showed that C. sativa ameliorates cyclophosphamide-induced emesis by increasing in body weight and normal diet intake with a decrease in kaolin diet intake after 7 days. Moreover, C. sativa significantly decreases (serotonin) 5-HT, dopamine and noradrenaline, as well as decreasing oxidative stress and inflammation. Administration of C. sativa significantly increased the expression of CB1R in intestinal homogenate. Treatment with C. sativa also improved the histological feature of an intestinal tissue. These results suggested that C. sativa possess antiemetic, antioxidant and anti-inflammatory effects in chemotherapy-induced nausea in rats by activating CB1R.


Assuntos
Antineoplásicos , Cannabis , Humanos , Ratos , Animais , Serotonina , Caulim/efeitos adversos , Antioxidantes/farmacologia , Dopamina , Ratos Wistar , Náusea/induzido quimicamente , Náusea/tratamento farmacológico , Náusea/prevenção & controle , Ciclofosfamida/toxicidade , Peso Corporal , Norepinefrina
14.
Int J Pharm ; 631: 122539, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36572266

RESUMO

Increasing interest in developing antifibrotic therapies became a paramount priority due to the globally raised incidence of deaths secondary to hepatic cirrhosis. This work deals with the development of innovative antifibrotic pirfenidone -loaded lecithin core nanocapsules. This with the intention to target the liver and to increase the drug bioavailability, reducing drug liver toxicity, and studying the associated hepatic microenvironment changes. PFD-loaded lecithin nanocapsules (PFD-LENCs) were prepared using the natural lipoid S45 for its dual benefits of being both a lipid and an amphiphilic surfactant. The selected formulation exhibited in vitro sustained drug release up to 24 h compared to free PFD, which is consistent with the studied pharmacokinetic profile. The studied cytotoxicity of PFD as well as PFD-LENCs exhibited negligible cytotoxicity in normal oral epithelial cells. For exploring the capability of the PFD-LENCs in reaching the liver; in vivo tracing using CLSM, in vivo biodistribution to the vital organs were conducted and electron microscopic examination for depicting nanoparticles in liver tissue was performed. Results revealed the capability of the prepared fluorescent LENC2 in reaching the liver, PFD-LENCs detection in the Disse space of the liver and the significant accumulation of PFD-LENCs in liver tissue compared to the other tested organs. The assessment of the necro-inflammatory, antioxidant and the anti-fibrotic effect of PFD-LENCs (50 & 100 mg/kg) exhibited a significant decrease of liver enzymes, TNF-α, TGF-ß, Col-1, α-SMA, and TIMP-1, and a significant increase of catalase enzyme and MMP2 compared to free PFD. EM studies, revealed often detection of dendritic cells in PFD-LENCs (100 mg/kg) treated mice and abnormal collagen structure which can represent an adjunct contribution to the antifibrotic mechanism of PFD-LENCs. In conclusion, the development of this innovative PFD loaded lecithin nanocapsules achieved a targeting ability to the liver, controlled drug release, thereby increase the PFD therapeutic value in downregulating hepatic fibrosis in adjunct with the reduction of liver toxicity.


Assuntos
Lecitinas , Nanocápsulas , Camundongos , Animais , Distribuição Tecidual , Cirrose Hepática/tratamento farmacológico , Piridonas/farmacocinética
15.
Sci Rep ; 12(1): 22601, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585479

RESUMO

Lutein is a naturally potent antioxidant carotenoid synthesized in green microalgae with a potent ability to prevent different human chronic conditions. To date, there are no reports of the immune-stimulating effect of pure lutein isolated from Scenedesmus obliquus. Thus, we isolated the natural lutein from S. obliquus and evaluated its effectiveness as an immunostimulant against cyclophosphamide-induced brain injury. We purified all-E-(3R, 3'R, 6'R)-Lutein from S. obliquus using prep-HPLC and characterized it by 1H- and 13C-NMR spectroscopy. We assigned rats randomly to four experimental groups: the Control group got a vehicle for lutein dimethyl sulfoxide for ten successive days. The Cyclophosphamide group received a single i.p injection of Cyclophosphamide (200 mg/kg). Lutein groups received 50 and 100 (mg/kg) of lutein one time per day for ten successive days after the cyclophosphamide dose. Lutein administration reduced brain contents of Macrophage inflammatory protein2 (MIP2), cytokine-induced- neutrophil chemoattractant (CINC), and Matrix metalloproteinase 1 (MMP1). Besides, it lowered the contents of interleukin 1 beta (IL-1ß) and interleukin 18 (IL-18), associated with low content of NLR pyrin domain protein 3 (NLRP3) and consequently caspase-1 compared to the cyclophosphamide group. In the histomorphometric analysis, lutein groups (50 and 100 mg/Kg) showed mild histopathological alterations as they significantly reduced nuclear pyknosis numbers by 65% and 69% respectively, compared to the cyclophosphamide group. This is the first study that showed the immunomodulatory roles of lutein against cyclophosphamide-induced brain injury via decreasing neuroinflammation, chemokines recruitment, and neuron degeneration with the modulation of immune markers. Hence, lutein can be an effective immunomodulator against inflammation-related immune disorders.


Assuntos
Lesões Encefálicas , Microalgas , Scenedesmus , Humanos , Animais , Ratos , Luteína/farmacologia , Luteína/metabolismo , Microalgas/metabolismo , Scenedesmus/metabolismo , Carotenoides/metabolismo
16.
Eur J Pharmacol ; 932: 175217, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36007603

RESUMO

Modulation of the inflammasome NLRP3 and SIRT1 are new combat strategy for brain injury protection. The inflammasome activates proinflammatory cytokines releasing interleukin-1ß and interleukin-18 which in turn affect the toxins release from immune cells. In addition, SIRT1 controls many biological functions, such as immune response and oxidative stress. Protocatechuic has versatile biological activities and possesses antioxidant, anti-inflammatory and neuroprotective effects. So this work aims to study immunomodulatory effect of protocatechuic acid on cyclophosphamide chemotherapy drug-induced brain injury via modulation of inflammosomes NLRP3 and SIRT1. Rats were randomly assigned to four experimental groups. Normal control group was injected with a single i.p injection of saline. Cyclophosphamide group was injected with a single i.p injection of cyclophosphamide (200 mg/kg). Protocatechuic acid groups were orally administered (50 &100 mg/kg) once daily for 10 consecutive days after cyclophosphamide injection. Protocatechuic acid administration exhibited improvements of the cognition function and memory, a reduction in brain contents of MDA, NLRP3, IL-1 ß, NF-κB, IKBKB and Galectin 3 and an elevation of GSH and SIRT1 compared to cyclophosphamide group. In addition, protocatechuic acid administration ameliorated the elevation of caspase 3 and iNOS gene expression and alleviated the neuron degeneration caused by cyclophosphamide. In conclusion, the therapeutic action of protocatechuic acid and its cellular and molecular mechanisms are new insights against various human ailments, especially, neurodegenerative disease as brain injury induced by cyclophosphamide chemotherapy drug in rats through modulation of inflammosomes NLRP3 and SIRT1.


Assuntos
Lesões Encefálicas , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/metabolismo , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/tratamento farmacológico , Caspase 3 , Ciclofosfamida/efeitos adversos , Citocinas/metabolismo , Galectina 3 , Humanos , Hidroxibenzoatos , Quinase I-kappa B , Imunidade , Inflamassomos/metabolismo , Interleucina-18 , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Sirtuína 1/metabolismo
17.
Res Pharm Sci ; 17(2): 153-163, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35280839

RESUMO

Background and purpose: Kidney diseases impose significant global health challenges. Potassium dichromate (PD) is a heavy metal frequently associated with nephrotoxicity. PD prompts oxidative and inflammatory injuries in renal tissues. L-carnitine is a naturally-occurring amino acid commonly used as a supplement. Experimental approach: Forty rats were randomly allocated into 5 groups. Group 1 (normal) received only saline. Nephrotoxicity was induced in the remaining groups by PD (15 mg/kg; i.p). Group 2 served as a nephrotoxic group. Groups 3-5 received L-carnitine (25, 50, and 100 mg/kg; p.o.), respectively for 4 weeks. Findings/Results: PD administration resulted in elevated serum creatinine and blood urea nitrogen accompanied by diminished reduced glutathione and elevated malondialdehyde, tumor necrosis factor-alpha, and transforming growth factor-beta renal tissue contents relative to normal rats. PD also produced apoptotic histopathological injuries and down-regulated PI3K/Akt signaling pathway; signifying ongoing apoptosis. In the current work, L-carnitine use in the selected dose levels resulted in improvement of all the aforementioned serum, renal tissue, and histological parameters relative to nephrotoxic rats. L-carnitine up-regulated PI3K/Akt signaling pathway that was down-regulated post PD use. Conclusion and implications: Collectively, the study highlighted that the possible mechanisms beyond the beneficial effects of L-carnitine are mainly through its antioxidant as well as anti-inflammatory actions. L- carnitine significantly abrogated apoptosis via up-regulation of PI3K/Akt signaling pathway and signified restoration of normal renal cell proliferation and functionality.

18.
Int Immunopharmacol ; 101(Pt B): 107867, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34489184

RESUMO

Adenosine monophosphate-activated protein kinase (AMPK) has a crucial role in neuroprotection. It phosphorylates serine/threonine kinase (Akt) Substrate inhibiting the inflammatory responses induced by the nuclear factor-κB (NF-κB). Exposure to chromium VI dust among workers has been reported and induced brain injury, as the absorption of chromium through the nasal membrane has been found to deliver it directly to the brain. The study aimed to investigate the influence of administration of L-carnitine or/and Co Q10 as theraputic agents against potassium dichromate (PD)-induced brain injury via AMPK/AKT/NF-κß signaling pathway. Brain injury was induced by PD intranasally as a single dose of 2 mg/kg, 24 h latter rats received L-carnitine (100 mg/kg; orally), Co Q10 (50 mg/kg; orally) and L-carnitine (50 mg/kg; orally) + Co Q10 (25 mg/kg; orally) respectively for 3 days. Locomotor activity was assessed before and at the end of the experiment, then, biochemical and histopathological investigations were assessed in brain homogenate. The exposure of rats to PD promoted oxidative stress and inflammation via an increase in MDA and a decrease in GSH brain contents with an increase in brain contents of TNF-α, IL-6, and NF-kß and reduced AMPK and AKT brain contents as compared to the control group. Treatment with L-carnitine + Co Q10 ameliorated cognitive impairment and oxidative stress, decreased the brain contents of inflammatory mediators; TNF-α, IL-6, and NF-κß elevated AMPK and AKT, as compared to each drug. Also, L-carnitine + Co Q10 administration restored morphological changes as degenerated neurons and necrosis. L-carnitine + Co Q10 play important role in AMPK/AKT/NF-κß pathway that responsible for their antioxidant and anti-inflammatory effects against PD-induced brain injury in rats.


Assuntos
Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/tratamento farmacológico , Carnitina/farmacologia , Dicromato de Potássio/toxicidade , Ubiquinona/análogos & derivados , Animais , Biomarcadores/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Distribuição Aleatória , Ratos , Ratos Wistar , Ubiquinona/farmacologia , Vitaminas/farmacologia
19.
Heliyon ; 7(6): e07207, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34169163

RESUMO

The activation of the Nrf2/HO-1 signaling pathway regulates cellular antioxidant stress and exerts anti-inflammatory and cytoprotective effects against acute lung injury (ALI). The present study aimed to evaluate the therapeutic role of L-carnitine (LC) against potassium dichromate (PD) - induced acute lung injury in adult male albino rats via modulation of Nrf2/HO-1 signaling pathway. For this purpose, forty rats were randomly allocated into 5 groups (8 rats each). The normal group received intranasal (i.n.) saline, while the ALI group received intranasal instillation of PD as a single dose of 2 mg/kg. The 3d - 5th groups received PD then after 24 h administered L-carnitine (25, 50 and 100 mg/kg; orally) for 3 consecutive days. The therapeutic effect of L-carnitine was evaluated by assessment of serum levels of glutathione (GSH) and malondialdehyde (MDA) along with measurement of lung contents of transforming growth factor ß1 (TGFß1), protein kinase B (AKT), Nuclear factor erythroid-2 related factor 2 (Nrf2), Kelch-like ECH-associated protein 1 (Keap1), heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase 1 enzyme (NQO1) and glutathione cysteine ligase modifier subunit (GCLM) expression. Post-treatment with L-carnitine effectively increased the levels of GSH and AKT, elevated Nrf2 and its target genes and decreased the levels of MDA and TGFß1 in comparison with PD control rats. Additionally, L-carnitine effectively reduced the number of goblet cell, inhibited the mucus formation in bronchioles and interstitial inflammatory infiltrate as well as alleviated the destruction of alveolar walls, and the congestion of blood vessels in lung tissue induced by PD. Our findings showed that L-carnitine may be a promising therapeutic agent against PD-induced acute lung injury.

20.
Biomed Res Int ; 2021: 8843218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33855084

RESUMO

Hepatic encephalopathy (HE) is a neuropsychiatric disease that is developed as a complication of both acute and chronic liver failure affecting psychomotor dysfunction, memory, and concentration. This study is aimed at evaluating the therapeutic effects of Dunaliella salina (D. salina) microalgae in thioacetamide- (TAA-) induced HE in rats. HE was induced by TAA (200 mg/kg; i.p.) for three successive days. Forty male Wister albino rats were divided into 4 groups; the first group was served as a normal, and the second group was injected with TAA and served as TAA control. The third and fourth groups were administered D. salina (100 and 200 mg/kg; p.o.), respectively, after TAA injection for 7 days. The behavioral and biochemical markers as well as histological aspects of HE were estimated. This study revealed that TAA caused behavioral changes, oxidative stress, neuroinflammation, nuclear pyknosis, and neurons degeneration. D. salina improved liver function and decreased oxidative stress and inflammatory mediator as TLR4 protein expression. Also, D. salina elevated HSP-25 and IGF-1 as well as improved brain histopathological alterations. In conclusion, D. salina exerted a therapeutic potential against HE via its antioxidant, antiinflammatory and cytoprotective effects.


Assuntos
Encefalopatia Hepática/complicações , Encefalopatia Hepática/metabolismo , Hiperamonemia/complicações , Hiperamonemia/metabolismo , Microalgas/química , Receptor 4 Toll-Like/metabolismo , Amônia/sangue , Animais , Comportamento Animal , Biomarcadores/sangue , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Choque Térmico HSP27/metabolismo , Encefalopatia Hepática/sangue , Hiperamonemia/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/enzimologia , Masculino , Modelos Biológicos , Estresse Oxidativo , Pós , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...